246 research outputs found

    LRG-BEASTS III: Ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80

    Full text link
    We have performed ground-based transmission spectroscopy of the hot Jupiter orbiting the cool dwarf WASP-80 using the ACAM instrument on the William Herschel Telescope (WHT) as part of the LRG-BEASTS programme. This is the third paper of a ground-based transmission spectroscopy survey of hot Jupiters using low-resolution grism spectrographs. We observed two transits of the planet and have constructed transmission spectra spanning a wavelength range of 4640-8840A. Our transmission spectrum is inconsistent with a previously claimed detection of potassium in WASP-80b's atmosphere, and is instead most consistent with a haze. We also do not see evidence for sodium absorption at a resolution of 100A.Comment: 11 pages, 9 figures. Accepted for publication in MNRA

    Rayleigh scattering in the transmission spectrum of HAT-P-18b

    Get PDF
    We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of R400R \approx 400 using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250\AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Tight constraints on the existence of additional planets around HD 189733

    Full text link
    We report a transit timing study of the transiting exoplanetary system HD 189733. In total we observed ten transits in 2006 and 2008 with the 2.6-m Nordic Optical Telescope, and two transits in 2007 with the 4.2-m William Herschel Telescope. We used Markov-Chain Monte Carlo simulations to derive the system parameters and their uncertainties, and our results are in a good agreement with previously published values. We performed two independent analyses of transit timing residuals to place upper mass limits on putative perturbing planets. The results show no evidence for the presence of planets down to 1 Earth mass near the 1:2 and 2:1 resonance orbits, and planets down to 2.2 Earth masses near the 3:5 and 5:3 resonance orbits with HD 189733b. These are the strongest limits to date on the presence of other planets in this system.Comment: 10 pages, 4 figures, accepted by MNRA

    High-precision transit observations of the exoplanet WASP-13b with the RISE instrument

    Get PDF
    WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d. The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly defined stellar and planetary radii. To better constrain the impact parameter, we have obtained high-precision transit observations with the rapid imager to search for exoplanets (RISE) instrument mounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted with a Markov chain Monte Carlo routine to derive accurate system parameters. We found an orbital inclination of 85°.2 ± 0°.3 resulting in stellar and planetary radii of 1.56 ± 0.04 R⊙ and 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the main sequence and is in the hydrogen-shell-burning phase. We also discuss how the limb darkening affects the derived system parameters. With a density of 0.17ρJ, WASP-13b joins the group of low-density planets whose radii are too large to be explained by standard irradiation models. We derive a new ephemeris for the system, T0= 245 5575.5136 ± 0.0016 (HJD) and P= 4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ= 1500 K) and the bright host star (V= 10.4 mag) make it a good candidate for follow-up atmospheric studies

    Fourier analysis of unequally-spaced time series : with applications to the study of helium stars and binary systems

    Get PDF
    The application of the discrete Fourier transform to the determination of the frequency content of unevenly-sampled astronomical time series is discussed, and an interactive computer package which incorporates a variety of power-spectrum and time-domain techniques is described. A frequency analysis of the light curves of two hot, extreme helium stars, BD-9°4395 and HD160641, shows that their photometric variability is caused by non-radial pulsation. Spectroscopic evidence in support of non-uniform mass loss is presented for BD-9°4395. Spectroscopic and photometric observations of two early-type eclipsing binary systems, AL Sculptoris and DM Persei, have been analysed to yield their absolute dimensions. AL Scl is found to be a detached system in which both components rotate faster than synchronism. The origin of distortions in its light curve is unclear. DH Per is shown to be part of a triple system in which the third component is most probably a late-B star in a 98-day orbit with a semi-major axis of 0.9 A.U. The binary system is confirmed to be semi-detached and to have evolved through a phase of rapid mass transfer. DH Per joins a small group of massive, semi-detached systems whose characteristics differ significantly from the classical Algols, and which may result from case-A, mass-transfer processes. Spectroscopic and photometric observations of the F4V star HD123058 do not support the hypothesis that it is a binary system. Broad lines in its spectrum are attributed to a somewhat enhanced rotation rate, and the star is shown to be essentially unevolved. The derivation of the equation of condition in Sterne's rigorous method for the analysis of the spectroscopic elements of binary systems, and its modification for incorporating observed times of minimum light into the adjustment of the elements, are outlined. A computer code for the determination of orbital elements according to this scheme is described

    A transit timing analysis of nine RISE light curves of the exoplanet system TrES-3

    Get PDF
    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage, or have clear systematics. A new ephemeris was calculated using the transit times, and was found to be T_c(0) = 2454632.62610 +- 0.00006 HJD and P = 1.3061864 +- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed for sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming the additional planet is in an initially circular orbit.Comment: 21 pages, 4 figures, Accepted for publication in Ap

    SuperWASP: Wide Angle Search for Planets

    Get PDF
    SuperWASP is a fully robotic, ultra-wide angle survey for planetary transits. Currently under construction, it will consist of 5 cameras, each monitoring a 9.5 x 9.5 deg field of view. The Torus mount and enclosure will be fully automated and linked to a built-in weather station. We aim to begin observations at the beginning of 2003.Comment: 4 pages, 1 figure, to be published in proceedings of "Scientific Frontiers in Research on Extrasolar Planets

    A transiting companion to the eclipsing binary KIC002856960

    Full text link
    We present an early result from an automated search of Kepler eclipsing binary systems for circumbinary companions. An intriguing tertiary signal has been discovered in the short period eclipsing binary KIC002856960. This third body leads to transit-like features in the light curve occurring every 204.2 days, while the two other components of the system display eclipses on a 6.2 hour period. The variations due to the tertiary body last for a duration of \sim1.26 days, or 4.9 binary orbital periods. During each crossing of the binary orbit with the tertiary body, multiple individual transits are observed as the close binary stars repeatedly move in and out of alignment with the tertiary object. We are at this stage unable to distinguish between a planetary companion to a close eclipsing binary, or a hierarchical triply eclipsing system of three stars. Both possibilities are explored, and the light curves presented.Comment: Accepted into A&A Letters (5 pages & 3 figures

    The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?

    Get PDF
    We review five independent techniques which are used to set the distance scale to globular clusters, including subdwarf main sequence fitting utilizing the recent Hipparcos parallax catalogue. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. This new distance scale estimate is combined with a detailed numerical Monte Carlo study designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5±1.311.5\pm 1.3 Gyr, with a one-sided, 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ\sigma compared to our earlier estimate, due completely to the new distance scale---which we emphasize is not just due to the Hipparcos data. This now provides a lower limit on the age of the universe which is consistent with either an open universe, or a flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided which can be used to update our age estimate as improved determinations for various quantities become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty, submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat
    corecore